Analysis and Application of an Orthogonal Nodal Basis on Triangles for Discontinuous Spectral Element Methods

نویسندگان

  • Shaozhong Deng
  • Wei Cai
چکیده

In this paper, we propose and analyze an orthogonal non-polynomial nodal basis on triangles for discontinuous spectral element methods (DSEMs) for solving Maxwell’s equations. It is based on the standard tensor product of the Lagrange interpolation polynomials and a “collapsing” mapping between the standard square and the standard triangle. The basis produces diagonal mass matrices for the DSEMs and is easy to implement. Numerical results for electromagnetic scattering in heterogeneous media are provided to demonstrate the exponential convergence of the proposed basis, and its application to the simulation of optical coupling by whispering gallery modes between two microcylinders is presented as well.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elasto-plastic analysis of discontinuous medium using linearly conforming radial point interpolation method

In this paper, the linearly conforming enriched radial basis point interpolation method is implemented for the elasto-plastic analysis of discontinuous medium. The linear conformability of the method is satisfied by the application of stabilized nodal integration and the enrichment of radial basis functions is achieved by the addition of linear polynomial terms. To implement the method for the ...

متن کامل

Discontinuous spectral element method modeling of optical coupling by whispering gallery modes between microcylinders.

We introduce a high-order time-domain discontinuous spectral element method for the study of the optical coupling by evanescent whispering gallery modes between two microcylinders, the building blocks of coupled resonator optical waveguide devices. By using the discontinuous spectral element method with a Dubiner orthogonal polynomial basis on triangles and a Legendre nodal orthogonal basis on ...

متن کامل

Analysis of High-order Approximations by Spectral Interpolation Applied to One- and Two-dimensional Finite Element Method

The implementation of high-order (spectral) approximations associated with FEM is an approach to overcome the difficulties encountered in the numerical analysis of complex problems. This paper proposes the use of the spectral finite element method, originally developed for computational fluid dynamics problems, to achieve improved solutions for these types of problems. Here, the interpolation n...

متن کامل

A performance comparison of nodal discontinuous Galerkin methods on triangles and quadrilaterals

This work presents a study on the performance of nodal bases on triangles and on quadrilaterals for discontinuous Galerkin solutions of hyperbolic conservation laws. A nodal basis on triangles and two tensor product nodal bases on quadrilaterals are considered. The quadrilateral element bases are constructed from the Lagrange interpolating polynomials associated with the Legendre–Gauss–Lobatto ...

متن کامل

Discontinuous Galerkin methods with nodal and hybrid modal/nodal triangular, quadrilateral, and polygonal elements for nonlinear shallow water flow

We present a comprehensive assessment of nodal and hybrid modal/nodal discontinuous Galerkin (DG) finite element solutions on a range of unstructured meshes to nonlinear shallow water flow with smooth solutions. The nodal DG methods on triangles and a tensor-product nodal basis on quadrilaterals are considered. The hybrid modal/nodal DG methods utilize two different synergistic polynomial bases...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005